Karpathy分享过的一个错误匹配导致幽灵刹车的案例上图是前Tesla AI 视觉总监Andrej Karpathy再分享他们用视觉替代毫米波雷达的逻辑的时候举过的一个例子。先讲下背景,因为要保持自车舒适以及对于危险的预判和保护性驾驶,所以一般在辅助驾驶功能时候前车大幅度减速时候,即使离自车比较远,自车也要做相应的减速操作,以减小后续急刹以及后续碰撞追尾风险。所以这里就是因为毫米波高度上没有足够分辨率,当前车经过桥洞下时候,这时候分别属于前车和前方静止桥洞的毫米波检测被错误的匹配了视觉目标,由于毫米波雷达能够给出前车相对自车速度,那么这种情况下错误匹配成前车的桥洞点就会告知自车,前车突然刹停,这时候最合理的操作就是开始减速,造成所谓的“幽灵刹车”。上面场景实际非常普遍,高速上有很多静止物体会触发毫米波回波形成检测点,比如桥洞,龙门架,地面的井盖,在前车经过这些静止物体的时候就很容易触发无匹配,从而造成幽灵刹车,严重甚至造成后车追尾。为了减少幽灵刹车,车企只能选择降低对完全静止物体毫米波量测的置信度,因为毕竟是L2辅助驾驶,要求驾驶员时刻关注路况。这样当前方真的出现静止障碍物的时候,辅助驾驶就有可能忽略这一毫米波雷达检测,导致自车不制动了。这也是很多公司现在选择安装前向激光雷达,以及Tesla选择利用视觉Occupancy Network以及视觉物体速度加速度估计,来避免此类问题的原因。