一文读懂二极管及其选型

二极管(Diode)是具有两个电极的元件,算是半导分立器件中最简单的一类,其最明显的特质就是它的单向导电特性,就是说电流只能从一边过去,却不能从另一边过来(从正极流向负极)。

早期的二极管包含“猫须晶体”(Cat’s Whisker Crystals)和真空管(Thermionic Valves)。
1904年,英国物理学家弗莱明根据“爱迪生效应”发明了世界上第一只电子二极管——真空电子二极管。它是依靠阴极热发射电子到阳极实现导通。
电源正负极接反则不能导电,它是一种能够单向传导电流的电子器件。早期电子二极管存在体积大、需预热、功耗大、易破碎等问题,促使了晶体二极管的发明。
1947年,美国肖克利团队发明晶体二极管,又称半导体二极管。在半导体二极管内部有一个PN结和两个引出端。
这种电子器件按照外加电压的方向,具备单向电流的传导性。现今最普遍的二极管大多是使用半导体材料如硅或锗。
晶体二极管的核心是PN结,关于PN结首先要了解三个概念。
  • 本征半导体:指不含任何掺杂元素的半导体,如纯硅晶片或纯锗晶片。
  • P型半导体:掺杂了产生空穴的含较低电价杂质的半导体,如在本征半导体中Si(4+)中掺入Al(3+)的半导体。 
  • N型半导体:掺杂了产生空穴的含较低电价杂质的半导体,如在本征半导体中硅Si(4+)中掺入磷P(5+)的半导体。
由P型半导体和N型半导体相接触时,就产生一个独特的PN结界面,在界面的两侧形成空间电荷层,构成自建电场。
当外加电压等于零时,由于PN结两边载流子的浓度差引起扩散电流和由自建电场引起的漂移电流相等而处于电平衡状态,这也是常态下的PN结。
以PN结为核心结构,加上引线或引脚形成单向导电的二极管。
当外加电压方向由P极指向N极时,导通。
二极管是由管芯、管壳和两个电极构成。管芯就是一个PN结,在PN结的两端各引出一个引线,并用塑料、玻璃或金属材料作为封装外壳,就构成了晶体二极管,如下图所示。P区的引出的电极称为正极或阳极,N区的引出的电极称为负极或阴极。

半导体二极管的核心是PN结,它的特性就是PN结的特性 —— 单向导电性。常利用伏安特性曲线来形象地描述二极管的单向导电性。二极管的伏安特性是指加在二极管两端电压和流过二极管的电流之间的关系,用于定性描述这两者关系的曲线称为伏安特性曲线。通过晶体管图示仪观察到硅二极管的伏安特性如下图所示。

  
下面对二极管伏安特性曲线加以说明:
正向特性
  • 外加正向电压较小时,二极管呈现的电阻较大,正向电流几乎为零,曲线OA段称为不导通区或死区。一般硅管的死区电压约为0.5伏,锗的死区电压约为0.2伏,该电压值又称门坎电压或阈值电压。
  • 当外加正向电压超过死区电压时,PN结内电场几乎被抵消,二极管呈现的电阻很小,正向电流开始增加,进入正向导通区,但此时电压与电流不成比例如AB段。随外加电压的增加正向电流迅速增加,如BC段特性曲线陡直,伏安关系近似线性,处于充分导通状态。
  • 二极管导通后两端的正向电压称为正向压降(或管压降),且几乎恒定。硅管的管压降约为0.7V,锗管的管压降约为0.3V。二极管正向导通时,要特别注意它的正向电流不能超过最大值,否则将烧坏PN结。
反向特性
  • 二极管承受反向电压时,加强了PN结的内电场,二极管呈现很大电阻,此时仅有很小的反向电流。如曲线OD段称为反向截止区,此时电流称为反向饱和电流。实际应用中,反向电流越小说明二极管的反向电阻越大,反向截止性能越好。一般硅二极管的反向饱和电流在几十微安以下,锗二极管则达几百微安,大功率二极管稍大些。
  • 当反向电压增大到一定数值时(图中D点),反向电流急剧加大,进入反向击穿区,D点对应的电压称为反向击穿电压。二极管被击穿后电流过大将使管子损坏,因此除稳压管外,二极管的反向电压不能超过击穿电压。
温度对特性的影响
由于二极管的核心是一个PN结,它的导电性能与温度有关。温度升高时二极管正向特性曲线向左移动,正向压降减小;反向特性曲线向下移动,反向电流增大。
 

 

二极管最基本的分类方法是按工作频率可分为高频二极管和低频二极管。高频二极管可分为检波肖特基二极管、波段开关二极管和PIN二极管。低频二极管有整流二极管、开关二极管、肖特基势垒二极管、齐纳二极管。另外,作为保护元件一般使用齐纳二极管,但随着周边电路的精密化、应用微细化,被要求使用更高性能的保护元件 — TVS (Transient Voltage Suppressor)。

按二极管构造来分类,主要分为平面型和耐高压的台面型。

平面型:现在最常用的半导体结合的方法,在硅基板上形成氧化膜,在必要的地方开孔把不纯物扩散结合。

扩散结合形(PN结合形)※:把不纯物热扩散到硅半导体里,形成叫做P形,N形的不纯物扩散领域。这个结合部产生叫做电位墙壁的墙壁。

肖特基势垒型※:利用金属与半导体结合时产生的电位墙壁的叫做肖特基垫垒形。很久以前就知金属和半导体接触时拥有整流特性,但理论说明的人是Mr.Shotoky,因此这个构造的起名为肖特基垫垒。和PN形来比,恢复时间快,所以高频的整流效果非常好,还有顺方向电压也低,功耗也少,所以广泛用于高频整流。

台面型:结合部像富士山,这个构造的逆电压 (VR) 容易变大,多用于整流二极管。耐压容易做大,但相反与Planar形相比逆电流也变大,我公司的整流二极管是这个构造。

 
二极管按封装形状分类,大体分为插件形和贴片形(表面贴装和方形贴片)。

常见插件封装:

DO-41  (如:塑封1N4007/SR240/SR260、玻封1N47系列和BZX85C系列等);

DO-35(34)(如:1N4148、BZX55C系列等);

DO-15(如:塑封SR240、SR260等);

DO-201AD(如:塑封SR340、SR360、SR540等);

TO-220(如:肖特基MBR10100CT、MBR20100CT等);

TO-92(如:S8050、SS8050、S8550、SS8550等);

TO-251(如:2SB1412等);

TO-126(如:B772、D882等);

桥堆如KBP、KBL、KBU、KBJ、GBP、GBL、GBU、GBJ等都是插件封装的。

常见贴片封装:

SOT-23(如:MMBT3904、MMBT3906等);

SOT-89(如:2SB772U等);

SOD-123(如:1N4148W等);

SOD-323(如:1N4148WS等);

SOD-523(如:1N4148WT等);

DO-214AC(SMA、SMX)(如:M7等);

DO-214AA(SMB)(如:SK24等);

DO-214AB(SMC)(如:SK34等);

LL-34(如:LL4148等);

SOD-123FL(如:RS07M等);

MD-S(如:桥堆MB6S等);

ABS(如:ABS10等)等等。

 
二极管按集成程度分类,可分为普通二极管和二极管阵列。

 
二极管按正向电流大小来分,IF未满1A的叫做小信号二极管,1A以上的叫做中功率/大功率二极管。

二极管按其使用的材料可分为锗(Ge)二极管、硅(Si)二极管、砷化镓(GaAs)二极管、磷化镓(GaP)二极管等。二极管按其封装材料可分为塑料二极管、玻璃二极管、金属二极管、片状二极管、无引线圆柱形二极管。
 
按二极管PN结构造面的特点,还可分类如下:
1、点接触型二极管
点接触型二极管是在锗或硅材料的单晶片上压触一根金属针后,再通过电流法而形成的。因此,其PN结的静电容量小,适用于高频电路。但是,与面结型相比较,点接触型二极管正向特性和反向特性都差,因此,不能使用于大电流和整流。因为构造简单,所以价格便宜。对于小信号的检波、整流、调制、混频和限幅等一般用途而言,它是应用范围较广的类型。
  
2、键型二极管
键型二极管是在锗或硅的单晶片上熔接或银的细丝而形成的。其特性介于点接触型二极管和合金型二极管之间。与点接触型相比较,虽然键型二极管的PN结电容量稍有增加,但正向特性特别优良。多作开关用,有时也被应用于检波和电源整流(不大于50mA)。在键型二极管中,熔接金丝的二极管有时被称金键型,熔接银丝的二极管有时被称为银键型。
  
3、合金型二极管
在N型锗或硅的单晶片上,通过合金铟、铝等金属的方法制作PN结而形成的。正向电压降小,适于大电流整流。因其PN结反向时静电容量大,所以不适于高频检波和高频整流。
4、扩散型二极管
在高温的P型杂质气体中,加热N型锗或硅的单晶片,使单晶片表面的一部变成P型,以此法PN结。因PN结正向电压降小,适用于大电流整流。最近,使用大电流整流器的主流已由硅合金型转移到硅扩散型。
5、台面型二极管
PN结的制作方法虽然与扩散型相同,但是,只保留PN结及其必要的部分,把不必要的部分用药品腐蚀掉。其剩余的部分便呈现出台面形,因而得名。初期生产的台面型,是对半导体材料使用扩散法而制成的。因此,又把这种台面型称为扩散台面型。对于这一类型来说,似乎大电流整流用的产品型号很少,而小电流开关用的产品型号却很多。 
6、平面型二极管
在半导体单晶片(主要地是N型硅单晶片)上,扩散P型杂质,利用硅片表面氧化膜的屏蔽作用,在N型硅单晶片上仅选择性地扩散一部分而形成的PN结。因此,不需要为调整PN结面积的药品腐蚀作用。由于半导体表面被制作得平整,故而得名。并且,PN结合的表面,因被氧化膜覆盖,所以公认为是稳定性好和寿命长的类型。最初,对于被使用的半导体材料是采用外延法形成的,故又把平面型称为外延平面型。对平面型二极管而言,似乎使用于大电流整流用的型号很少,而作小电流开关用的型号则很多。
  
7、合金扩散型二极管
它是合金型的一种。合金材料是容易被扩散的材料。把难以制作的材料通过巧妙地掺配杂质,就能与合金一起过扩散,以便在已经形成的PN结中获得杂质的恰当的浓度分布。此法适用于制造高灵敏度的变容二极管。
8、外延型二极管
用外延面长的过程制造PN结而形成的二极管。制造时需要非常高超的技术。因能随意地控制杂质的不同浓度的分布,故适宜于制造高灵敏度的变容二极管。
9、肖特基二极管
基本原理是:在金属(例如铅)和半导体(N型硅片)的接触面上,用已形成的肖特基来阻挡反向电压。肖特基与PN结的整流作用原理有根本性的差异。其耐压程度只有40V左右。其特长是:开关速度非常快:反向恢复时间trr特别地短。因此,能制作开关二极和低压大电流整流二极管。
按二极管用途来分类也比较常见,有以下21类:
1、检波用二极管
检波主要是将高频信号中的低频信号检出,这一作用经常用于收音机中。
就原理而言,从输入信号中取出调制信号是检波,以整流电流的大小(100mA)作为界线通常把输出电流小于100mA的叫检波。锗材料点接触型、工作频率可达400MHz,正向压降小,结电容小,检波效率高,频率特性好,为2AP型。类似点触型那样检波用的二极管,除用于检波外,还能够用于限幅、削波、调制、混频、开关等电路。也有为调频检波专用的特性一致性好的两只二极管组合件。
2、整流用二极管
由于二极管具有单向导电性,因此可将方向交替变换的交流电转换为单一方向的脉冲直流电,完成整流的功能。
就原理而言,从输入交流中得到输出的直流是整流。以整流电流的大小(100mA)作为界线通常把输出电流大于100mA的叫整流。面结型,工作频率小于KHz,最高反向电压从25伏至3000伏分A~X共22档。分类如下:①硅半导体整流二极管2CZ型、②硅桥式整流器QL型、③用于电视机高压硅堆工作频率近100KHz的2CLG型。
3、限幅用二极管
由于在二极管两端加正向电压使其导通后,其正向压降基本保持不变,因此其在电路中可以作为限幅元件,将信号的幅度限制在一定的范围内。
大多数二极管能作为限幅使用。也有象保护仪表用和高频齐纳管那样的专用限幅二极管。为了使这些二极管具有特别强的限制尖锐振幅的作用,通常使用硅材料制造的二极管。也有这样的组件出售:依据限制电压需要,把若干个必要的整流二极管串联起来形成一个整体。
4、调制用二极管
通常指的是环形调制专用的二极管。就是正向特性一致性好的四个二极管的组合件。即使其它变容二极管也有调制用途,但它们通常是直接作为调频用。
5、混频用二极管
使用二极管混频方式时,在500~10,000Hz的频率范围内,多采用肖特基型和点接触型二极管。
6、放大用二极管
用二极管放大,大致有依靠隧道二极管和体效应二极管那样的负阻性器件的放大,以及用变容二极管的参量放大。因此,放大用二极管通常是指隧道二极管、体效应二极管和变容二极管。
7、开关用二极管
由于二极管具有单向导电性,在正向电压作用下电阻很小,相当于通路,类似于开关打开状态;而在反向电压作用下电阻很大,相当于断路,类似于开关闭合状态。二极管具有的这种开关特性,使得其可以组成各种逻辑电路。
有在小电流下(10mA程度)使用的逻辑运算和在数百毫安下使用的磁芯激励用开关二极管。小电流的开关二极管通常有点接触型和键型等二极管,也有在高温下还可能工作的硅扩散型、台面型和平面型二极管。开关二极管的特长是开关速度快。而肖特基型二极管的开关时间特短,因而是理想的开关二极管。2AK型点接触为中速开关电路用;2CK型平面接触为高速开关电路用;用于开关、限幅、钳位或检波等电路;肖特基(SBD)硅大电流开关,正向压降小,速度快、效率高。
8、变容二极管
可以通过对其施加反向电压来改变其PN结的静电容量,从而达到变容的功能,经常于电视机高频头的频道转换和调谐电路。
用于自动频率控制(AFC)和调谐用的小功率二极管称变容二极管。日本厂商方面也有其它许多叫法。通过施加反向电压, 使其PN结的静电容量发生变化。因此,被使用于自动频率控制、扫描振荡、调频和调谐等用途。通常,虽然是采用硅的扩散型二极管,但是也可采用合金扩散型、外延结合型、双重扩散型等特殊制作的二极管,因为这些二极管对于电压而言,其静电容量的变化率特别大。结电容随反向电压VR变化,取代可变电容,用作调谐回路、振荡电路、锁相环路,常用于电视机高频头的频道转换和调谐电路,多以硅材料制作。
9、频率倍增用二极管
对二极管的频率倍增作用而言,有依靠变容二极管的频率倍增和依靠阶跃(即急变)二极管的频率倍增。频率倍增用的变容二极管称为可变电抗器,可变电抗器虽然和自动频率控制用的变容二极管的工作原理相同,但电抗器的构造却能承受大功率。阶跃二极管又被称为阶跃恢复二极管,从导通切换到关闭时的反向恢复时间trr短,因此,其特长是急速地变成关闭的转移时间显著地短。如果对阶跃二极管施加正弦波,那么,因tt(转移时间)短,所以输出波形急骤地被夹断,故能产生很多高频谐波。
10、稳压二极管
稳压二极管是一种工作于反向击穿状态的面结型硅二极管,在稳压电路中串入限流电阻,限制稳压二极管击穿后电流值,使得其击穿状态可以一直保持下去。
是代替稳压电子二极管的产品。被制作成为硅的扩散型或合金型。是反向击穿特性曲线急骤变化的二极管。作为控制电压和标准电压使用而制作的。二极管工作时的端电压(又称齐纳电压)从3V左右到150V,按每隔10%,能划分成许多等级。在功率方面,也有从200mW至100W以上的产品。工作在反向击穿状态,硅材料制作,动态电阻RZ很小,一般为2CW型;将两个互补二极管反向串接以减少温度系数则为2DW型。
11、PIN型二极管(PIN Diode)
这是在P区和N区之间夹一层本征半导体(或低浓度杂质的半导体)构造的晶体二极管。PIN中的I是”本征”意义的英文略语。当其工作频率超过100MHz时,由于少数载流子的存贮效应和”本征”层中的渡越时间效应,其二极管失去整流作用而变成阻抗元件,并且,其阻抗值随偏置电压而改变。在零偏置或直流反向偏置时,”本征”区的阻抗很高;在直流正向偏置时,由于载流子注入”本征”区,而使”本征”区呈现出低阻抗状态。因此,可以把PIN二极管作为可变阻抗元件使用。它常被应用于高频开关(即微波开关)、移相、调制、限幅等电路中。
12、雪崩二极管 (Avalanche Diode)
它是在外加电压作用下可以产生高频振荡的晶体管。产生高频振荡的工作原理是栾的:利用雪崩击穿对晶体注入载流子,因载流子渡越晶片需要一定的时间,所以其电流滞后于电压,出现延迟时间,若适当地控制渡越时间,那么,在电流和电压关系上就会出现负阻效应,从而产生高频振荡。它常被应用于微波领域的振荡电路中。
13、江崎二极管 (Tunnel Diode)
它是以隧道效应电流为主要电流分量的晶体二极管。其基底材料是砷化镓和锗。其P型区的N型区是高掺杂的(即高浓度杂质的)。隧道电流由这些简并态半导体的量子力学效应所产生。发生隧道效应具备如下三个条件:①费米能级位于导带和满带内;②空间电荷层宽度必须很窄(0.01微米以下);简并半导体P型区和N型区中的空穴和电子在同一能级上有交叠的可能性。江崎二极管为双端子有源器件。其主要参数有峰谷电流比(IP/PV),其中,下标”P”代表”峰”;而下标”V”代表”谷”。江崎二极管可以被应用于低噪声高频放大器及高频振荡器中(其工作频率可达毫米波段),也可以被应用于高速开关电路中。
14、快速关断(阶跃恢复)二极管 (Step Recovary Diode)
它也是一种具有PN结的二极管。其结构上的特点是:在PN结边界处具有陡峭的杂质分布区,从而形成”自助电场”。由于PN结在正向偏压下,以少数载流子导电,并在PN结附近具有电荷存贮效应,使其反向电流需要经历一个”存贮时间”后才能降至最小值(反向饱和电流值)。阶跃恢复二极管的”自助电场”缩短了存贮时间,使反向电流快速截止,并产生丰富的谐波分量。利用这些谐波分量可设计出梳状频谱发生电路。快速关断(阶跃恢复)二极管用于脉冲和高次谐波电路中。
15、肖特基二极管 (Schottky Barrier Diode)
它是具有肖特基特性的”金属半导体结”的二极管。其正向起始电压较低。其金属层除材料外,还可以采用金、钼、镍、钛等材料。其半导体材料采用硅或砷化镓,多为N型半导体。这种器件是由多数载流子导电的,所以,其反向饱和电流较以少数载流子导电的PN结大得多。由于肖特基二极管中少数载流子的存贮效应甚微,所以其频率响仅为RC时间常数限制,因而,它是高频和快速开关的理想器件。其工作频率可达100GHz。并且,MIS(金属-绝缘体-半导体)肖特基二极管可以用来制作太阳能电池或发光二极管。
16、阻尼二极管
具有较高的反向工作电压和峰值电流,正向压降小,高频高压整流二极管,用在电视机行扫描电路作阻尼和升压整流用。
17、瞬变电压抑制二极管
TVP管,对电路进行快速过压保护,分双极型和单极型两种,按峰值功率(500W-5000W)和电压(8.2V~200V)分类。
18、双基极二极管(单结晶体管)
两个基极,一个发射极的三端负阻器件,用于张驰振荡电路,定时电压读出电路中,它具有频率易调、温度稳定性好等优点。
19、发光二极管
用磷化镓、磷砷化镓材料制成,体积小,正向驱动发光。工作电压低,工作电流小,发光均匀、寿命长、可发红、黄、绿单色光。经常应用于VCD、DVD、计算器等显示器上,例如电脑硬盘的指示灯、充电器的指示灯等都是发光二极管在生活中的应用。
20、硅功率开关二极管
硅功率开关二极管具有高速导通与截止的能力。它主要用于大功率开关或稳压电路、直流变换器、高速电机调速及在驱动电路中作高频整流及续流箝拉,具有恢复特性软、过载能力强的优点、广泛用于计算机、雷达电源、步进电机调速等方面。
21、旋转二极管
主要用于无刷电机励磁、也可作普通整流用。
其中点接触型二极管,按正向和反向特性还可分类如下:
1、一般用点接触型二极管
这种二极管正如标题所说的那样,通常被使用于检波和整流电路中,是正向和反向特性既不特别好,也不特别坏的中间产品。如:SD34、SD46、1N34A等等属于这一类。
2、高反向耐压点接触型二极管
是最大峰值反向电压和最大直流反向电压很高的产品。使用于高压电路的检波和整流。这种型号的二极管一般正向特性不太好或一般。在点接触型锗二极管中,有SD38、1N38A、OA81等等。这种锗材料二极管,其耐压受到限制。要求更高时有硅合金和扩散型。
3、高反向电阻点接触型二极管
正向电压特性和一般用二极管相同。虽然其反方向耐压也是特别地高,但反向电流小,因此其特长是反向电阻高。使用于高输入电阻的电路和高阻负荷电阻的电路中,就锗材料高反向电阻型二极管而言,SD54、1N54A等等属于这类二极管。
4、高传导点接触型二极管
它与高反向电阻型相反。其反向特性尽管很差,但使正向电阻变得足够小。对高传导点接触型二极管而言,有SD56、1N56A等等。对高传导键型二极管而言,能够得到更优良的特性。这类二极管,在负荷电阻特别低的情况下,整流效率较高。
二极管(视频来源:爱上半导体)

信号二极管发展趋势:

1、表贴化:小信号二极管插件封装基本淘汰,全部都是表贴封装;
2、小型化:SOT23向SOT323、SOT523、SOD52、SOD923、0402封装演进;
3、平引脚:翼型引脚和弯角引脚向平引脚切换,散热和通流性能更优。
另外,小型化发展还有两种趋势,即CSP(Chip ScalePackage)封装和QFN(Quad Flat No-lead Packge)封装。两者相比较而言,由于CSP封装是芯片级封装,与QFN相比具有如下几个优点:
1、具有小的寄生参数,对于RF应用有更优异的表现;
2、高的封装可靠性,能支持至少3次加工返工;
3、由于封装较小,更加能节约PCB面积。
功率二极管的发展趋势:
SMX封装:通流能力增强:SMA通流能力达到2A;SMB通流能力到达4A;SMC通流能力达到5A。
引脚优化:弯引角演进为直引脚,散热机器稳定性更强。
DPAK/D2PAK:对于200-400V整流二极管需求,可以选用此类封装器件高度扁平化,另外可以选用SMPC封装,通流能力更强。
TO-220/TO-247:对于600V以上的二极管需求,主流推荐选用TO-220/TO-247封装;
插件封装:目前功率二极管推荐以TO-22和TO-247封装为优选封装。
 

二极管选型基本原则:分类与用途和应用场景相关。

二极管类型
用途
应用场景
PIN二极管
调频调相。开关
射频电路
变容二极管
调频,高配电路匹配
调制解调电路
快恢复二极管
整流、续流
AC-AC、AC-DC
整流二极管
整流
AC-DC
肖特基二极管
整流、续流、开关
AC-AC、AC-DC
开关二极管
开关
开关电路
桥堆
整流
AC-DC
稳压管
稳压
稳压电路
瞬态抑制二极管/晶闸管
瞬态电压保护、ESD保护
保护电路
 
PIN二极管:微波开关利用PIN管在直流正-反偏压下呈现近似导通或断开的阻抗特性,实现了控制微波信号通道转换作用。PIN 二极管的直流伏安特性和PN结二极管是一样的,但是在微波频段却有根本的差别。由于PIN 二极I层的总电荷主要由偏置电流产生。而不是由微波电流瞬时值产生,所以其对微波信号只呈现一个线性电阻。此阻值由直流偏置决定,正偏时阻值小,接近于短路,反偏时阻值大,接近于开路。因此PIN二极管对微波信号不产生非线性整流作用,这是和一般二极管的根本区别,所以它很适合于做微波控制器件。因此,可以把PIN二极管作为可变阻抗元件使用。它常被应用于高频开关(即微波开关)、移相、调制、限幅等电路中。
普通的二极管由PN结组成。在P和N半导体材料之间加入一薄层低掺杂的本征(Intrinsic)半导体层,组成的这种P-I-N结构的二极管就是PIN二极管。正因为有本征(Intrinsic)层的存在,PIN二极管应用很广泛,从低频到高频的应用都有,主要用在RF领域,用作RF 开关和RF保护电路,也有用作光电二极管(PhotoDiode)。PIN二极管包括PIN光电二极管和PIN开关二极管。
 
选用时主要考虑到PIN二极管射频特性参数与实际电路匹配,选择时可选择SOT、SOD等通用标准封装;另外Infineon将逐步退出二极管市场,新选型不予考虑。
变容二极管:选用时主要考虑偏压范围以及相应的容值,在使用时所提供的电压范围对应的变容比应满足要求。对于频率发生器还要求在此电压范围内的电容变化线性要好。另外电压的变化不能超过器件的最大重复工作电压。
快恢复二极管:
1、选用时主要考虑其最大整流电流、最大反向工作电流、截止频率及反向恢复时间等参数。
2、反向击穿电压VBR与反向重复工作电压VRWM的选择:
一般情况下,VRWM=80%-85%VBR,对于VRWM的选择,通常要求VRWM不小于3倍的线路的工作电压。
3、新选型禁止选用SMA/B/C封装,推荐选用SMA/B/C-FL(直引脚表贴封装),插件优选TO-220/TO237等封装,轴向插装的禁止选用。
4、最大平均正向电路IO、热阻Rjc、最高节温TjM的选择:
对于半导体器件来说,使用时产生的结温与器件的可靠性有密切的关系,一般情况下,结温每升高10-12摄氏度,器件的失效率要增加一倍。因此,在器件的选型时,应尽量选用热阻小,允许结温高的器件;应选择通过相同正向电流测得温升最小的器件。
整流二极管:选用时主要考虑其最大整流电流、最大反向工作电流、截止频率及反向恢复时间等参数。普遍串联稳压电源电路中使用的整流二极管,对截止频率的反向恢复时间要求不高,只要根据电路的要求选择最大整流电流和最大反向工作电流符合要求的整流二极管即可,禁止选用Openjuction工艺的二极管,禁止选择轴向插装的二极管。
肖特基二极管:选用时主要考虑最大整流电流、最大反向工作电流、封装、抗浪涌电流,优选表贴小型化封装,禁止选用轴向插装的二极管。其它选项原则可以参考1501C快恢复二极管的选型。
开关二极管:
1、选用时主要考虑正向额定电流、反向重复工作电压、正向压降及开发过程中的损耗等参数。
2、最大平均正向电流IO、热阻RJC、最高结温TJM的选择:
对于半导体器件来说,使用时产生的结温与器件的可靠性有密切的关系,一般情况下,结温每升高10-12摄氏度,器件的失效率要增加一倍。因此,在器件的选型时,应尽量选用热阻小,允许结温高的器件;应选择通过相同正向电流测得温升最小的器件。
3、反向击穿电压VBR与反向重复工作电压VRWM的选择:
一般情况下,VRWM=80%-85%VBR,对于VRWM的选择,通常要求VRWM不小于3倍的线路的工作电压。
4、正向压降VF与反向恢复时间Trr的选择:
对于开关二极管,影响二极管导通/截止(开关)速度的关键是由于非平衡载流子存储效应引起的反向恢复时间的存在。为了提高二极管的开关速度,人们制造能高速导通与关断的二极管。除了对二极管图形进行优化设计外,还在工艺中采用掺金等措施,引入深能级杂质,降低少许寿命,提高二极管的开关速度。
 
SiC二极管:
1、SiC二极管比较成熟的产品有600V(650V)和1200V档次,1700V SiC也在逐步推向市场,600V(650V)主要推荐选用DPAK封装,1200V推荐选用TO-220或者TO-237
2、最早的SiC二极管是纯肖特基结构的,其优点是Vf值比较低,但是抗浪涌能力很差,器件长期可靠性风险高,后续SiC主流厂家Cree等陆续推出JBS(Junction Barrier Schottky)结构的SiC二极管,可以显著提高抗浪涌能力,提高器件长期可靠性能。特别是在1200V SiC选型时,要特别注意器件的抗浪涌性能是否满足产品设计需求。目前拥有JBS结构的厂家主要有Wolfspeed(Cree)、Infinenon、Rohm(2016年底推出的产品)。
稳压二极管:
1、在可能的情况下,应选择小微分电阻的器件。
2、在可能的情况下,选择低温度系数的器件,但不主张选用低温度系数的稳压二极管。
3、设计时,应考虑电压的容差,即电压的变化范围应尽可能选大。
硅瞬态保护器件:
1、电压选择:TVS管的最大钳位电压VCMAX不大于电路的最大允许安全电压,最大反向工作电压VRWM不大于电路的最大工作电压,一般可选择VRWM略大于电路工作电压。
2、瞬态功率(电流)的选择:额定的最大脉冲功率必须大于电路中出现的最大瞬态浪涌功率。在选择用于保护的TVS管时,设计人员要计算回路中的脉冲时间(如RC回路的脉冲时间tp大约等于R*C),以确定选用的TVS管的脉冲功率。TVS管的峰值脉冲功率与脉冲持续时间有一定的关系,脉冲持续时间越大,峰值脉冲功率越小,反之则越大。
3、选用TVS管作为数据信号线的保护时,要考虑TVS管结电容对信号波形的影响,应选用小结电容器件。另外也不应单独地强调减小电容,小电容的器件有一部分是以牺牲浪涌功率来获得的,在选用时应在结电容与浪涌功率两者间综合考虑。
 
另外还可以按二极管参数选型:
1、正向导通压降
压降:二极管的电流流过负载以后相对于同一参考点的电势(电位)变化称为电压降,简称压降。
导通压降:二极管开始导通时对应的电压。
正向特性:在二极管外加正向电压时,在正向特性的起始部分,正向电压很小,不足以克服PN结内电场的阻挡作用,正向电流几乎为零。当正向电压大到足以克服PN结电场时,二极管正向导通,电流随电压增大而迅速上升。
反向特性:外加反向电压不超过一定范围时,通过二极管的电流是少数载流子漂移运动所形成反向电流。由于反向电流很小,二极管处于截止状态。反向电压增大到一定程度后,二极管反向击穿。
 
 
正向导通压降与导通电流的关系
在二极管两端加正向偏置电压时,其内部电场区域变窄,可以有较大的正向扩散电流通过PN结。只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能真正导通。但二极管的导通压降是恒定不变的吗?它与正向扩散电流又存在什么样的关系?通过下图1的测试电路在常温下对型号为SM360A的二极管进行导通电流与导通压降的关系测试,可得到如图2所示的曲线关系:正向导通压降与导通电流成正比,其浮动压差为0.2V。从轻载导通电流到额定导通电流的压差虽仅为0.2V,但对于功率二极管来说它不仅影响效率也影响二极管的温升,所以在价格条件允许下,尽量选择导通压降小、额定工作电流较实际电流高一倍的二极管。
二极管导通压降测试电路
  导通压降与导通电流关系
正向导通压降与环境的温度的关系
在我们开发产品的过程中,高低温环境对电子元器件的影响才是产品稳定工作的最大障碍。环境温度对绝大部分电子元器件的影响无疑是巨大的,二极管当然也不例外,在高低温环境下通过对SM360A的实测数据表1与图3的关系曲线可知道:二极管的导通压降与环境温度成反比。在环境温度为-45℃时虽导通压降最大,却不影响二极管的稳定性,但在环境温度为75℃时,外壳温度却已超过了数据手册给出的125℃,则该二极管在75℃时就必须降额使用。这也是为什么开关电源在某一个高温点需要降额使用的因素之一。
导通压降与导通电流测试数据
导通压降与环境温度关系曲线

2、额定电流、最大正向电流IF

额定电流IF指二极管长期运行时,根据运行温升折算出来的平均电流值。目前最大功率整流二极管的IF值可达1000A。
是指二极管长期连续工作时,允许通过的最大正向平均电流值,其值与PN结面积及外部散热条件等有关。因为电流通过管子时会使管芯发热,温度上升,温度超过容许限度(硅管为141左右,锗管为90左右)时,就会使管芯过热而损坏。所以在规定散热条件下,二极管使用中不要超过二极管最大整流电流值。例如,常用的IN4001-4007型锗二极管的额定正向工作电流为1A。

3、 最大平均整流电流Io

最大平均整流电流IO:在半波整流电路中,流过负载电阻的平均整流电流的最大值。折算设计时非常重要的值。

4、最大浪涌电流IFSM

运行流过的过量的正向电流。不是正常的电流,而是瞬间电流,这个值相当大。

5、最大反向峰值电压VRM

即使没有反向电流,只要不断地提高反向电压,迟早会使二极管损坏。这种能加上的反向电压,不是瞬时电压,而是反复加上的正反向电压。因给整流器加的是交流电压,它的最大值是规定的重要因子。最大反向峰值电压VRM指为避免击穿所能加的最大反向电压。目前最高的VRM值可达几千伏。

6、 最大反向电压VR

上述最大反向峰值电压是反复加上的峰值电压,VR是连续加直流电压的值。用于直流电流,最大直流反向电压对于确定允许值和上限值是很重要的。
 

7、最高工作频率fM

由于PN结的结电容存在,当工作频率超过某一值时,它的单向导电性将变差。点接触式二极管的fM值较高,在100MHz以上;整流二极管的fM较低,一般不高于几千Hz。

8、 反向恢复时间Trr

当正向工作电压从正向电压变成反向电压时,二极管工作的理想情况是电流能瞬时截止。实际上,一般要延迟一点点时间。决定电流截止延时的量,就是反向恢复时间。

9、 最大功率P

二极管中有电流流过,就会吸热,而使自身温度升高。最大功率P为功率的最大值。具体讲就是加载二极管两端的电压乘以流过的电流。这个极限参数对稳压二极管,可变电阻二极管显得特别重要。

10、 反向饱和漏电流IR

指在二极管两端加入反向电压时,流过二极管的电流,该电流与半导体材料和温度有关。在常温下,硅管的IR为nA(10-9A)级,鍺管的IR为mA(10-6A)级。

11、降额(结温降额)

降额可以提高产品可靠性,延长使用寿命,根据温度降低10℃寿命增加一倍的理论,下面列出了不同额定结温的管子最小降额结温数据。
二极管降额
额定值TjM
125℃
150℃
175℃
200℃
降额后可使用的TjM
110℃
135℃
160℃
185℃

12、安规

在选型阶段应该考虑到器件是否通过了安规认证,主要应该考虑功率器件。一般为各国广泛接受的安规认证类型有UL(北美)、CSA(加拿大)、TUV(德国)、VDE等。

13、可靠性设计

正确选用器件及器件周边的线路设计、机械设计和热设计等来控制器件在整机中的工作条件,防止各种不适当的应力或者操作给器件带来损伤,从而最大限度地发挥器件的固有可靠性。

14、容差设计

设计单板时,应放宽器件的参数允许变化的范围(包括制造容差、温度漂移、时间漂移),以保证器件的参数在一定范围内变化时,单板能正常工作。

15、禁止选用封装

禁止选用轴向插装的二极管封装、禁止选用Open-junction二极管。
O/J是OPEN JUNCTION的晶圆扩散工艺,在晶圆扩散后切片成晶粒,晶粒的边缘是粗糙的,电性能不稳定,需要用混合酸(主要成分为氢氟酸)洗掉边缘,然后包以硅胶并封装成型,可信赖性较差。
 
GPP是Glassivation passivation parts的缩写,是玻璃钝化类器件的统称,该产品就是在现有产品普通硅整流扩散片的基础上对拟分割的管芯P/N结面四周烧制一层玻璃,玻璃与单晶硅有很好的结合特性,使P/N结获得最佳的保护,免受外界环境的侵扰,提高器件的稳定性,可信赖性极佳。
 
O/J的散热性没有GPP的好,两者本质结构截然不同:O/J芯片需要经过酸洗后加铜片焊接配合硅胶封装,内部结构上显得比GPP的大;GPP芯片造的整流桥免去了酸洗、上硅胶等步骤,直接与整流桥的铜连接片焊接。内部结构显的比O/J芯片制造而成的小。才造成直观的、习惯性的误解。
 
GPP芯片和OJ芯片的综合评价
1、GPP芯片在wafer阶段即完成玻璃钝化,并可实施VR的probe testing,而OJ芯片只有在制得成品后测试VR。
2、VRM为1000V的GPP芯片,通常从P+面开槽和进行玻璃钝化,台面呈负斜角结构(表面电场强度高于体内),而OJ芯片的切割不存在斜角。 
3、GPP芯片的玻璃钝化分布在pn结部分区域(不像GPRC芯片对整个断面实施玻璃钝化,而OJ芯片对整个断面施加硅橡胶保护。
4、GPP芯片由于机械切割的原因留下切割损伤层,而OJ芯片的切割损伤层可经化学腐蚀去除掉。
5、GPP芯片采用特殊高温熔融无机玻璃膜钝化,Tjm及HTIR稳定性高于用有机硅橡胶保护的OJ制品。 
6、GPP芯片适合小型化、薄型化、LLP封装,而OJ芯片适合引出线封装。
在制作工艺上的区别。 
(1)OJ的芯片必须经过焊接、酸洗、钝化、上白胶、成型固化烘烤等步骤,其电性(反向电压)与封装酸洗工艺密切相关,常规封装形式为插件式;
(2)而GPP在芯片片制造工艺中已包含酸洗、钝化。其电性由芯片片直接决定。常见封状形式为贴片式。
 
 
素材来源:硬十、罗姆、TsinghuaJoking

作者:极客石头

在搞事情的路上越走越远。

发表评论

您的邮箱地址不会被公开。 必填项已用 * 标注