说明:本文来源与Microchip公开文档,作者Kevin Tretter。文中红色字体为编者阅读时标注。
仪表放大器这一术语经常被误用,它指的是器件的应用,而非器件的架构。在过去,任何被认为精准(即,实现某种输入失调校正)的放大器都被视为“仪表放大器”,这是因为它被设计为用于测量系统。仪表放大器(即 INA)与运算放大器(运放)相关,因为二者基于相同的基本构件。但INA 是专用器件,专为特殊功能设计,并非一个基本构件。就这一点而言,仪表放大器不是运放,因为它们的用途不同。
就用途而言,INA与运放之间最显著的区别或许是前者缺少反馈回路。运放可配置为执行各种功能,包括反相增益、同相增益、电压跟随器、积分器、低通滤波器和高通滤波器等。在所有情况下,用户都会提供从运放的输出到输入的反馈回路,此反馈回路决定放大器电路的功能。这种灵活性使运放得以广泛用于各种应用。另一方面,INA 的反馈位于内部,因此没有到输入引脚的外部反馈。INA 的配置限制为 1 个或 2 个外部电阻, 也可能限制为一个可编程寄存器,用于设置放大器的增益。
INA专为差分增益和共模抑制功能而设计和使用。仪表放大器将放大反相输入和同相输入间的差值,同时抑制这两个输入的任何共用信号,从而使 INA 的输出上不存在任何共模成分。增益(反相或同相)配置的运放将以设定的闭环增益来放大输入信号,但输出上将一直存在共模信号。所关注信号与共模信号间的增益差会导致共模成分(以差分信号的百分比表示)减少,但运放的输出上仍存在共模成分,这将限制输出的动态范围。如上所述,INA用于在存在大量共模成分时提取小信号,但共模成分的形式可能多种多样。当使用采用惠斯通电桥配置(我们将稍后探讨)的传感器时,存在由两个输入共用的较大直流电压。但是,干扰信号可具有多种形式;一个常见来源是来自电源线的 50 Hz 或 60 Hz 干扰,更不用说谐波了。这种时变误差源通常还会随频率发生明显波动,从而使得在仪表放大器的输出端进行补偿变得极其困难。由于存在这些变化,因此不仅要在直流下,还要在各种频率下实现共模抑制。
差分放大器
图 1:差分放大器电路
其中:Rt = 电阻对的总不匹配率
如本例所示,可通过该简单电路实现的性能极为有限。即使在手动进行电阻匹配时,也很难实现 66 dB 以上的共模抑制比。此外,这并未考虑因温度所致的波动,不同电阻在温度系数上的任何差异都将进一步增大不匹配率,从而导致更差的共模抑制比。考虑到所有这些因素和限制,单片差分放大器通常是性能相对较高的应用的最佳解决方案。从技术上说,之前讨论的差分放大器电路不是仪表放大器,但对于某些需要高速和/或高共模电压的应用十分有用。对于高精度应用而言,真正的仪表放大器通常才是最佳选择。可利用两种常见的电路来构建仪表放大器,一种电路基于两个放大器,另一种基于三个放大器。下面将详细讨论这两种电路。请注意,这些基本电路可利用标准运放来构建,但也是当今提供的许多单片仪表放大器中使用的基本电路概念。
双运放 INA
图 2:双运放仪表放大器电路
这种电路架构的限制之一是它不支持单位增益。尽管大多数仪表放大器用于提供增益(因此,要实现单位增益也不是难事),但某些应用严格地将仪表放大器专用于共模抑制。因此,对于某些应用,假设将INA用于单位增益配置也是合理的。双运放INA的另一个限制是输入的共模范围有限,尤其是在低增益下和使用单电源运放时。请记住,图2左侧的放大器必定会将反相节点处的输入信号放大1+𝑅1/𝑅2。因此,如果输入信号的共模电压过高,放大器将发生饱和(超出输出裕量)。高增益下将有更多的放大器裕量,因此在其他所有条件一样的情况下,电路可支持更宽的输入信号共模范围。
之前讨论的差分放大器电路的限制之一是较低的输入阻抗。从图 2 中可以看出,双运放INA 电路不存在此问题,因为两个差分输入信号直接馈入放大器的输入引脚,其阻抗通常为几百万欧姆。但是,由于输入信号路径不同,各差分输入信号的延时也不同,这就导致不同频率时的共模抑制比(仪表放大器的关键参数)较差。与差分放大器电路类似, 直流下的共模抑制比同样受电阻匹配率限制。
相对于分立式解决方案,基于这种双运放架构的单片 INA 从本质上来说将具有更好的电阻匹配和温度跟踪性能,因为基于硅的电阻可通过微调来提供大约0.01%的匹配率。但双运放 INA架构仍有一些明确的限制,不改变电路架构的情况下无法克服这些限制。
三运放 INA
第二个常见的 INA 电路基于三个运算放大器,如图 3 所示。可以发现,此电路的后半部分与之前讨论的差分放大器完全相同。在电路的前端添加两个运算放大器缓冲器可提供较高且匹配良好的阻抗源。这有助于缓解与简单差分电路有关的主要问题之一。末端的差分放大器可以抑制共模成分。
图 3:传统的三运放仪表电路
由于共模成分始终伴随单位增益这一事实,三运放仪表放大器的共模抑制比将随差分增益的大小成比例增大。
许多单片仪表放大器均基于这一电路概念。单片解决方案提供完美匹配的放大器,并且能够使用微调电阻,从而实现优秀的共模抑制性能和较高的增益精度。近年来,单片仪表放大器对这一基本架构进行了额外的改进。例如,电流模式拓扑无需高精度电阻匹配便可实现高共模抑制比。在任何情况下,使用运算放大器和分立式元件的分立式解决方案通常都会提高成本并降低性能。
INA和运放的参数
如前文所述,运算放大器和仪表放大器是相关的,并且已阐明运放可用于构建 INA。由于这种相似性,有一些参数通用于运算放大器和仪表放大器。不过,由于INA 的特定功能,也存在一些 INA 特有的参数。在测量应用中,运放和INA 之间通用的两个重要参数是输入偏置电流和输入失调电压/失调电压漂移。
输入偏置电流是流入放大器输入、使输入晶体管偏置所需的电流量。此电流的数量级高至数 µA、低至数 pA,主要取决于放大器输入电路的架构。当高阻抗传感器与放大器的输入相连时,该参数极为重要。当偏置电流流经高阻抗时,阻抗两端会产生压降,从而导致电压误差。无论电路包含运算放大器还是仪表放大器,偏置电流均在电路的整个误差预算中起到关键作用。
运算放大器和仪表放大器通用的另一个重要放大器参数是输入失调电压。顾名思义,此参数反映了放大器反相输入和同相输入间的电压差。该失调电压取决于放大器的拓扑,其数量级为数微伏至数毫伏。与所有电气元件相似,放大器的行为随温度变化。对于放大器的失调电压更是如此。失调电压是误差的来源,由于失调随温度漂移,因此该误差也与温度相关。即使高精度放大器也将受温度漂移的影响。可通过选择低漂移放大器(例如,具有零漂移拓扑的放大器)或者通过执行周期性系统校准来校准失调和漂移的方式最大程度减少该误差源。
由于仪表放大器的特殊性质,存在一些在标准运算放大器数据手册中通常无法找到的附加参数,包括增益误差和非线性参数。增益误差通常指定为最大百分比,表示与特定放大器的理想增益的最大偏差。电阻网络中的电阻值变化和温度梯度均可导致增益误差。非线性参数还说明了放大器的增益特性。将输出与输入进行比较时,该参数用于定义与理想的直线传递函数的最大偏差。例如,如果仪表放大器的增益配置为10,则100 mV 的直流输入应产生 1V 输出。如果输入高达 500 mV,则输出应为 5V。这两点表示放大器的直线输入与输出传递函数。与该直线传递函数的任何偏差都将通过非线性参数指出。
应用示例:惠斯通电桥
如前文所述,仪表放大器旨在提供差分增益及有效抑制共模信号。这些特性使得 INA 非常适合采用经典惠斯通电桥配置的传感器(例如应变仪)。应变仪应用的惠斯通电桥包含四个元件,这些元件呈菱形排列,菱形的每条边均包含一个阻性元件(应变仪或固定电阻)。随后会在电桥上施加一个激励电压,并测量电桥中间部分两侧的输出电压。四分之一电桥仅包含一个可变电阻元件,即应变仪。半桥有两个可变电阻元件,全桥有全部四个可变电阻元件(这种情况下为应变仪)。采用多个应变仪的优势是能够提高灵敏度。在其他所有条件一样的情况下,半桥配置的灵敏度将为四分之一电桥的两倍,而全桥的灵敏度为四分之一电桥的四倍。
图 4:使用惠斯通电桥的仪表放大器
在本示例中,惠斯通电桥由直流源激励。假设 VDD设置为 5V,这会在电桥的中心分接处产生约 2.5V 的直流共模电压。施加到应变仪上的力将导致其各自的电阻发生变化, 从而使中心分接处产生较小的电压差。与共模电压相比,该电压变化非常小,通常为10 mV 左右,因此需要对这一微小电压差进行放大。仪表放大器非常适合此任务,其不但能够提供所需的放大系数,还能够抑制相对较高的共模信号(以及两个输入信号共用的任何附加噪声)。请记住,配置为简单应变仪的运算放大器仍会将共模信号(单位增益)传递至输出,从而缩小输出信号的动态范围。
说明:转载的目的是为了技术交流。如有侵权,请联系删除。