一 FPC 开料
二
FPC 钻导通孔
柔性印制板的通孔与刚性印制板一样也可以用数控钻孔,但不适用于卷带双面金属化孔电路的孔加工。随着电路图形的高密度化和金属化孔的小孔径化,加上数控钻孔的孔径有一定界限,现在许多新的钻孔技术已付实际应用。这些新的钻孔技术包括等离子体蚀孔、激光钻孔、微小孔径的冲孔、化学蚀孔等,这些钻孔技术比数控钻孔更容易满足卷带工艺的成孔要求。
柔性印制板的通孔与刚性印制板一样也可以用数控钻孔,但不适用于卷带双面金属化孔电路的孔加工。随着电路图形的高密度化和金属化孔的小孔径化,加上数控钻孔的孔径有一定界限,现在许多新的钻孔技术已付实际应用。这些新的钻孔技术包括等离子体蚀孔、激光钻孔、微小孔径的冲孔、化学蚀孔等,这些钻孔技术比数控钻孔更容易满足卷带工艺的成孔要求。
01数控钻孔
钻孔、铣覆盖膜和增强板的外形等的加工条件基本相同,但由于柔性印制板材料所使用的胶黏剂柔软,所以十分容易附着在钻头上,需要频繁地对钻头状态进行检验,而且要适当提高钻头的转速。对于多层柔性印制板或多层刚柔印制板的钻孔要特别细心。
02
冲孔
但在最近数年里,冲孔技术的模具精密化和数控钻孔两方面都取得了很大的进步,冲孔在柔性印制板上的实际应用已十分可行。最新的模具制造技术可制造能够冲切基材厚 25um 的无胶黏剂型覆铜箔层压板的直径 75um 的孔,冲孔的可靠性也相当高,如果冲切条件合适甚至还可以冲直径50um 的孔。冲孔装置也已数控化,模具也能小型化,所以能很好地应用于柔性印制板冲孔,数控钻孔和冲孔都不能用于盲孔加工。
03
激光钻孔
目前受激准分子激光加工的孔是最微细的。受激准分子激光是紫外线,直接破坏基底层树脂的结构,使树脂分子离散,产生的热量极小,所以可以把热对孔周围的损伤程度限制在最小范围内,孔壁光滑垂直。如果能把激光束进一步缩小的话就能够加工直径 10~20um 的孔。当然板厚孔径比越大,湿式镀铜也就越难。受激准分子激光技术钻孔的问题是高分子的分解会产生炭黑附着于孔壁,所以必须采取某些手段在电镀之前对表面进行清洗以除去炭黑。但是激光加工盲孔时,激光的均匀性也存在一定的问题,会产生竹子状残留物。
受激准分子激光最大的难点就是钻孔速度慢,加工成本太高。所以只限于用在高精度、高可靠性微小孔的加工。
冲击式二氧化碳激光一般是用二氧化碳气体为激光源,辐射的是红外线,与受激准分子激光因热效应而燃烧分解树脂分子不同,它属于热分解,加工的孔形状要比受激准子激光差得多,可以加工的孔径基本上是 70~100um,但加工速度明显的比受激准分子激光速度快得多,钻孔的成本也低得多。即使如此,仍比下面所叙述的等离子体蚀孔法和化学蚀孔法加工成本高得多,特别单位面积孔数多时更是如此。
冲击式二氧化碳激光要注意的是加工盲孔时,激光只能发射至铜箔表面,对表面的有机物完全不必去除,为了稳定清洗铜表面,应以化学蚀刻或等离子体蚀刻作为后处理。从技术的可能性来考虑,激光钻孔工艺用于卷带工艺基本上没有什么困难,但考虑到工序的平衡及设备的投资所占的比例,它就不占优势,但带式芯片自动化焊接工艺(TAB,Tape Automated Bonding)宽度狭小,采用卷带工艺可以提高钻孔速度,在这方面已经有了实际的例子。
三
孔金属化
近年来出现了取代化学镀,采用形成碳导电层技术的直接电镀工艺。柔性印制板的孔金属化也引入了这一技术。
柔性印制板由于其柔软,需要有特别的固定夹具,夹具不仅能把柔性印制板固定,而且在镀液中还必须稳定,否则镀铜厚度不均匀,这也是在蚀刻工序中引起断线和桥接的重要原因。要想获得均匀的镀铜层,必须使柔性印制板在夹具内绷紧,而且还要在电极的位置和形状上下功夫。
孔金属化外包加工,要尽可能避免外包给无柔性印制板孔化经验的工厂,如果没有柔性印制板专用的电镀线,孔化质量是无法保证的。
四
铜箔表面的清洗
为了提高抗蚀掩膜的附着力,涂布抗蚀掩膜之前要对铜箔表面进行清洗,即使这样的简单工序对于柔性印制板也需要特别注意。
如果铜箔表面处理不干净,那么与抗蚀掩膜的附着力就差,这样就会降低蚀刻工序的合格率。近来由于铜箔板质量的提高,单面电路情况下也可以省略表面清洗工序。但 100μm 以下的精密图形,表面清洗是必不可少的工序。
抗蚀剂的涂布-双面 FPC 制造工艺现在,抗蚀剂的涂布方法根据电路图形的精密度和产量分为以下三种方法:丝网漏印法、干膜/感光法、液态抗蚀剂感光法。
现在,抗蚀剂的涂布方法根据电路图形的精密度和产量分为以下三种方法:丝网漏印法、干膜/感光法、液态抗蚀剂感光法。
抗蚀油墨采用丝网漏印法直接把线路图形漏印在铜箔表面上,这是最常用的技术,适用于大批量生产,成本低廉。形成的线路图形的精度可以达到线宽 / 间距 0.2~0.3 mm,但不适用于更精密的图形。随着微细化这种方法逐步不能适应。与以下所叙述的干膜法相比需要有一定技术的操作人员,操作人员必须经过多年的培养,这是不利的因素。
干膜法只要设备、条件齐全就可制得 70~80μm 的线宽图形。现在 0.3mm 以下的精密图形大部分都可以用干膜法形成抗蚀线路图形。采用干膜,其厚度是 15~25μm,条件允许,批量水平可以制作 30~40μm 线宽的图形。
当选择干膜时,必须根据与铜箔板、工艺的匹配性并通过试验来确定。实验的水平即使有好的分辨能力,但并不一定在大批量生产使用时能有很高的合格率。柔性印制板薄且易于弯曲,如果选用硬一点的干膜则其较脆而随动性差,所以也就会产生裂缝或剥落从而使蚀刻的合格率降低。
干膜是卷状的,生产设备和作业较简单。干膜是由较薄的聚酯保护膜、光致抗蚀膜和较厚的聚酯离型膜等三层结构所构成。在贴膜之前首先要把离型膜(又称隔膜)剥去,再用热辊将其贴压在铜箔的表面上,显影前再撕去上面保护膜(又称载体膜或覆盖膜),一般柔性印制板两侧有导向定位孔,干膜可稍微比要贴膜的柔性铜箔板狭窄一点。刚性印制板用的自动贴膜装置不适用于柔性印制板的贴膜,必须进行部分的设计更改。由于干膜贴膜与其他的工序相比线速度大,所以不少厂都不用自动化贴膜,而是采用手工贴膜。
贴好干膜之后,为了使其稳定,应放置 1 5~20min 之后再进行曝光。
线路图形线宽如果在 30μm 以下,用干膜形成图形,合格率会明显下降。批量生产时一般都不使用干膜,而使用液态光致抗蚀剂。涂布条件不同,涂布的厚度会有所变化,如果涂布厚度 5~15μm的液态光致抗蚀剂于 5μm 厚的铜箔上,实验室的水平能够蚀刻 10μm 以下的线宽。
液态光致抗蚀剂,涂布之后必须进行干燥和烘焙,由于这一热处理会对抗蚀膜性能产生很大影响,所以必须严格控制干燥条件。